Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The SEACIT complex is involved in the maintenance of vacuole-mitochondria contact sites and controls mitophagy.

Identifieur interne : 000202 ( Main/Exploration ); précédent : 000201; suivant : 000203

The SEACIT complex is involved in the maintenance of vacuole-mitochondria contact sites and controls mitophagy.

Auteurs : Yinxing Ma [France] ; Alexis Moors [France] ; Nadine Camougrand [France] ; Svetlana Dokudovskaya [France]

Source :

RBID : pubmed:30673821

Descripteurs français

English descriptors

Abstract

The major signaling pathway that regulates cell growth and metabolism is under the control of the target of rapamycin complex 1 (TORC1). In Saccharomyces cerevisiae the SEA complex is one of the TORC1 upstream regulators involved in amino acid sensing and autophagy. Here, we performed analysis of the expression, interactions and localization of SEA complex proteins under different conditions, varying parameters such as sugar source, nitrogen availability and growth phase. Our results show that the SEA complex promotes mitochondria degradation either by mitophagy or by general autophagy. In addition, the SEACIT subcomplex is involved in the maintenance of the vacuole-mitochondria contact sites. Thus, the SEA complex appears to be an important link between the TORC1 pathway and regulation of mitochondria quality control.

DOI: 10.1007/s00018-019-03015-6
PubMed: 30673821


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The SEACIT complex is involved in the maintenance of vacuole-mitochondria contact sites and controls mitophagy.</title>
<author>
<name sortKey="Ma, Yinxing" sort="Ma, Yinxing" uniqKey="Ma Y" first="Yinxing" last="Ma">Yinxing Ma</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Villejuif</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moors, Alexis" sort="Moors, Alexis" uniqKey="Moors A" first="Alexis" last="Moors">Alexis Moors</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Villejuif</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Camougrand, Nadine" sort="Camougrand, Nadine" uniqKey="Camougrand N" first="Nadine" last="Camougrand">Nadine Camougrand</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNRS, IBGC, UMR 5095, 1, rue Camille Saint-Saens, 33000, Bordeaux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, IBGC, UMR 5095, 1, rue Camille Saint-Saens, 33000, Bordeaux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
<settlement type="city">Bordeaux</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Université de Bordeaux, IBGC, 1, rue Camille Saint-Saens, 33000, Bordeaux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Bordeaux, IBGC, 1, rue Camille Saint-Saens, 33000, Bordeaux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
<settlement type="city">Bordeaux</settlement>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
</author>
<author>
<name sortKey="Dokudovskaya, Svetlana" sort="Dokudovskaya, Svetlana" uniqKey="Dokudovskaya S" first="Svetlana" last="Dokudovskaya">Svetlana Dokudovskaya</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France. svetlana.dokudovskaya@igr.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Villejuif</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30673821</idno>
<idno type="pmid">30673821</idno>
<idno type="doi">10.1007/s00018-019-03015-6</idno>
<idno type="wicri:Area/Main/Corpus">000365</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000365</idno>
<idno type="wicri:Area/Main/Curation">000365</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000365</idno>
<idno type="wicri:Area/Main/Exploration">000365</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The SEACIT complex is involved in the maintenance of vacuole-mitochondria contact sites and controls mitophagy.</title>
<author>
<name sortKey="Ma, Yinxing" sort="Ma, Yinxing" uniqKey="Ma Y" first="Yinxing" last="Ma">Yinxing Ma</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Villejuif</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moors, Alexis" sort="Moors, Alexis" uniqKey="Moors A" first="Alexis" last="Moors">Alexis Moors</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Villejuif</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Camougrand, Nadine" sort="Camougrand, Nadine" uniqKey="Camougrand N" first="Nadine" last="Camougrand">Nadine Camougrand</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNRS, IBGC, UMR 5095, 1, rue Camille Saint-Saens, 33000, Bordeaux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, IBGC, UMR 5095, 1, rue Camille Saint-Saens, 33000, Bordeaux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
<settlement type="city">Bordeaux</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Université de Bordeaux, IBGC, 1, rue Camille Saint-Saens, 33000, Bordeaux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Bordeaux, IBGC, 1, rue Camille Saint-Saens, 33000, Bordeaux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
<settlement type="city">Bordeaux</settlement>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
</author>
<author>
<name sortKey="Dokudovskaya, Svetlana" sort="Dokudovskaya, Svetlana" uniqKey="Dokudovskaya S" first="Svetlana" last="Dokudovskaya">Svetlana Dokudovskaya</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France. svetlana.dokudovskaya@igr.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Villejuif</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cellular and molecular life sciences : CMLS</title>
<idno type="eISSN">1420-9071</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autophagy (physiology)</term>
<term>Gene Deletion (MeSH)</term>
<term>Glucose (metabolism)</term>
<term>Membrane Proteins (genetics)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>Mitophagy (physiology)</term>
<term>Nitrogen (metabolism)</term>
<term>Oxygen (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Vacuoles (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Autophagie (physiologie)</term>
<term>Azote (métabolisme)</term>
<term>Délétion de gène (MeSH)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Glucose (métabolisme)</term>
<term>Mitochondries (métabolisme)</term>
<term>Oxygène (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines membranaires (génétique)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Vacuoles (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucose</term>
<term>Membrane Proteins</term>
<term>Nitrogen</term>
<term>Oxygen</term>
<term>Reactive Oxygen Species</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines membranaires</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Espèces réactives de l'oxygène</term>
<term>Facteurs de transcription</term>
<term>Glucose</term>
<term>Mitochondries</term>
<term>Oxygène</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines membranaires</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Autophagie</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Autophagy</term>
<term>Mitophagy</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Deletion</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Délétion de gène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The major signaling pathway that regulates cell growth and metabolism is under the control of the target of rapamycin complex 1 (TORC1). In Saccharomyces cerevisiae the SEA complex is one of the TORC1 upstream regulators involved in amino acid sensing and autophagy. Here, we performed analysis of the expression, interactions and localization of SEA complex proteins under different conditions, varying parameters such as sugar source, nitrogen availability and growth phase. Our results show that the SEA complex promotes mitochondria degradation either by mitophagy or by general autophagy. In addition, the SEACIT subcomplex is involved in the maintenance of the vacuole-mitochondria contact sites. Thus, the SEA complex appears to be an important link between the TORC1 pathway and regulation of mitochondria quality control.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30673821</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1420-9071</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>76</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2019</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Cellular and molecular life sciences : CMLS</Title>
<ISOAbbreviation>Cell Mol Life Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>The SEACIT complex is involved in the maintenance of vacuole-mitochondria contact sites and controls mitophagy.</ArticleTitle>
<Pagination>
<MedlinePgn>1623-1640</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00018-019-03015-6</ELocationID>
<Abstract>
<AbstractText>The major signaling pathway that regulates cell growth and metabolism is under the control of the target of rapamycin complex 1 (TORC1). In Saccharomyces cerevisiae the SEA complex is one of the TORC1 upstream regulators involved in amino acid sensing and autophagy. Here, we performed analysis of the expression, interactions and localization of SEA complex proteins under different conditions, varying parameters such as sugar source, nitrogen availability and growth phase. Our results show that the SEA complex promotes mitochondria degradation either by mitophagy or by general autophagy. In addition, the SEACIT subcomplex is involved in the maintenance of the vacuole-mitochondria contact sites. Thus, the SEA complex appears to be an important link between the TORC1 pathway and regulation of mitochondria quality control.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Yinxing</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moors</LastName>
<ForeName>Alexis</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Camougrand</LastName>
<ForeName>Nadine</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>CNRS, IBGC, UMR 5095, 1, rue Camille Saint-Saens, 33000, Bordeaux, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Université de Bordeaux, IBGC, 1, rue Camille Saint-Saens, 33000, Bordeaux, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dokudovskaya</LastName>
<ForeName>Svetlana</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-6032-622X</Identifier>
<AffiliationInfo>
<Affiliation>CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France. svetlana.dokudovskaya@igr.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>01</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Cell Mol Life Sci</MedlineTA>
<NlmUniqueID>9705402</NlmUniqueID>
<ISSNLinking>1420-682X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C561842">TORC1 protein complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063306" MajorTopicYN="N">Mitophagy</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014617" MajorTopicYN="N">Vacuoles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Autophagy</Keyword>
<Keyword MajorTopicYN="N">Membrane contact sites</Keyword>
<Keyword MajorTopicYN="N">Mitochondria</Keyword>
<Keyword MajorTopicYN="N">Mitophagy</Keyword>
<Keyword MajorTopicYN="N">SEA complex</Keyword>
<Keyword MajorTopicYN="N">TORC1</Keyword>
<Keyword MajorTopicYN="N">Vacuole</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>01</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30673821</ArticleId>
<ArticleId IdType="doi">10.1007/s00018-019-03015-6</ArticleId>
<ArticleId IdType="pii">10.1007/s00018-019-03015-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):686-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2004 Sep 15;64(18):6438-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15374952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 Jul-Aug;3(4):329-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17377488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 29;450(7170):683-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18046405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2009 Jun;8(6):3176-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19338334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jun;5(6):e1000515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19521502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2009 Jul;17(1):87-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19619494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(9):R95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19751518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Nov;20(22):4730-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19793921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jan 22;327(5964):425-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20093466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2010 Oct;22(10):1469-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20639120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2011 Jun;10(6):M110.006478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Jun 1;30(11):2101-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21468027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 May 16;193(4):755-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21576396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2011 Jun 8;13(6):668-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21641548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Nov;7(11):1392-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21804352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 Oct;10(10):1367-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21841122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Nov;22(21):4124-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21900499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jan 27;287(5):3265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22157017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Jan 15;441(2):523-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22187934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2012 May 17;3:139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22629248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Jan 15;126(Pt 2):415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23230142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 May 28;6(277):ra42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23716719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 May 31;340(6136):1100-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23723238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jul 18;154(2):403-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23870128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jul 18;154(2):416-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23870129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2013 Sep 15;12(18):2948-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23974112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2789</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24240771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Biol. 2013 Dec 18;3(12):130185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24352740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2014 Jul;24(7):400-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24698685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2014 Jul 14;30(1):86-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25026035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2014 Jul 14;30(1):95-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25026036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014 Sep;10(9):1565-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25046117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2014 Nov;13(11):2855-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25073740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2014 Oct 1;33(19):2142-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25107473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2014 Dec;36:79-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25242279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2014 Dec 16;7(356):ra120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25515537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2015 Apr;42(4):835-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25670247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Feb 24;10(7):1215-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25704822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2015 Mar 01;58(3):103-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25757543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2015 Jun 15;128(12):2219-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25934700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Nov;1847(11):1434-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25979234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Jun 4;161(6):1413-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26046442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2015 Sep 14;210(6):883-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26370498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2016;12(1):1-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26799652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2016 Mar 08;2:15049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27462445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Sep 23;353(6306):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27708008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Nov 4;354(6312):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27811238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Jan 12;168(1-2):224-238.e10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28017329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 May 5;7(5):1539-1549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28325812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2017 Oct 2;216(10):3219-3229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28864540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2018 Apr 20;360(6386):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29674565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2018 Jul 7;502(1):76-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29787763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2018 Jun 4;45(5):621-636.e7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29870720</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Aquitaine</li>
<li>Nouvelle-Aquitaine</li>
<li>Île-de-France</li>
</region>
<settlement>
<li>Bordeaux</li>
<li>Villejuif</li>
</settlement>
<orgName>
<li>Université de Bordeaux</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Île-de-France">
<name sortKey="Ma, Yinxing" sort="Ma, Yinxing" uniqKey="Ma Y" first="Yinxing" last="Ma">Yinxing Ma</name>
</region>
<name sortKey="Camougrand, Nadine" sort="Camougrand, Nadine" uniqKey="Camougrand N" first="Nadine" last="Camougrand">Nadine Camougrand</name>
<name sortKey="Camougrand, Nadine" sort="Camougrand, Nadine" uniqKey="Camougrand N" first="Nadine" last="Camougrand">Nadine Camougrand</name>
<name sortKey="Dokudovskaya, Svetlana" sort="Dokudovskaya, Svetlana" uniqKey="Dokudovskaya S" first="Svetlana" last="Dokudovskaya">Svetlana Dokudovskaya</name>
<name sortKey="Moors, Alexis" sort="Moors, Alexis" uniqKey="Moors A" first="Alexis" last="Moors">Alexis Moors</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000202 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000202 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30673821
   |texte=   The SEACIT complex is involved in the maintenance of vacuole-mitochondria contact sites and controls mitophagy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30673821" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020